summaryrefslogtreecommitdiffstats
path: root/site/posts/CoqffiIntro.org
blob: d622e03b40a74b6d0e141807af4be577803b025a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#+BEGIN_EXPORT html
<h1><code>coqffi</code> in a Nutshell</h1>
#+END_EXPORT

For each entry of a ~cmi~ file, ~coqffi~ tries to generate an
equivalent (from the extraction mechanism perspective) Coq
definition. In this article, we walk through how ~coqffi~ works.

Note that we do not dive into the vernacular commands ~coqffi~
generates. They are of no concern for users of ~coqffi~.

#+TOC: headlines 2

#+BEGIN_EXPORT html
<div id="history">site/posts/CoqffiIntro.org</div>
#+END_EXPORT

* Getting Started

** Requirements

The latest version of ~coqffi~ (~1.0.0~beta2~ at the time of writing)
is compatible with OCaml ~4.08~ up to ~4.11~, and Coq ~8.12~.  If you
want to use ~coqffi~, but have incompatible requirements of your own,
feel free to [[https://github.com/coq-community/coqffi/issues][submit
an issue]].

** Installing ~coqffi~

The recommended way to install ~coqffi~ is through the
[[https://coq.inria.fr/opam/www][Opam Coq Archive]], in the ~released~
repository.  If you haven’t activated this repository yet, you can use
the following bash command.

#+BEGIN_SRC sh
opam repo add coq-released https://coq.inria.fr/opam/released
#+END_SRC

Then, installing ~coqffi~ is as simple as

#+BEGIN_SRC sh
opam install coq-coqffi
#+END_SRC

You can also get the source from
[[https://github.com/coq-community/coqffi][the upstream ~git~
repository]]. The ~README~ provides the necessary pieces of
information to build it from source.

** Additional Dependencies

One major difference between Coq and OCaml is that the former is pure,
while the latter is not. Impurity can be modeled in pure languages,
and Coq does not lack of frameworks in this respect. ~coqffi~
currently supports two of them:
[[https://github.com/Lysxia/coq-simple-io][~coq-simple-io~]] and
[[https://github.com/ANSSI-FR/FreeSpec][FreeSpec]]. It is also
possible to use it with
[[https://github.com/DeepSpec/InteractionTrees][Interaction Trees]],
albeit in a less direct manner.


* Primitive Types

~coqffi~ supports a set of primitive types, /i.e./, a set of OCaml
types for which it knows an equivalent type in Coq. The list is the
following (the Coq types are fully qualified in the table, but not in
the generated Coq module as the necessary ~Import~ statement are
generated too).

| OCaml type  | Coq type                      |
|-------------+-------------------------------|
| =bool=      | =Coq.Init.Datatypes.bool=     |
| =char=      | =Coq.Strings.Ascii.ascii=     |
| =int=       | =CoqFFI.Data.Int.i63=         |
| ='a list=   | =Coq.Init.Datatypes.list a=   |
| ='a option= | =Coq.Init.Datatypes.option a= |
| =string=    | =Coq.Strings.String.string=   |
| =unit=      | =Coq.Init.Datatypes.unit=     |

The =i63= type is introduced by the =CoqFFI= theory to provide signed
primitive integers to Coq users. They are implemented on top of the
(sadly unsigned) Coq native integers introduced in Coq
~8.10~. Hopefully, the =i63= type will be deprecated once [[https://github.com/coq/coq/pull/13559][signed
primitive integers find their way to Coq upstream]].

When processing the entries of a given interface model, ~coqffi~ will
check that they only use these types, or types introduced by the
interface module itself.

* Code Generation

~coqffi~ distinguishes three types of entries: types, pure functions,
and impure primitives. We now discuss how each one of them is handled.

** Types

By default, ~coqffi~ generates axiomatized definitions for each type
defined in a ~.cmi~ file. This means that src_ocaml[:exports
code]{type t} becomes src_coq[:exports code]{Axiom t : Type}.
Polymorphism is supported, /i.e./, src_ocaml[:exports code]{type 'a t}
becomes src_coq[:exports code]{Axiom t : forall (a : Type), Type}.

It is possible to provide a “model” for a type using the =coq_model=
annotation, for instance for reasoning purposes. For instance,
we can specify that a type is equivalent to a =list=.

#+BEGIN_SRC ocaml
type 'a t [@@coq_model "list"]
#+END_SRC

This generates the following Coq definition.

#+BEGIN_SRC coq
Definition t : forall (a : Type), Type := list.
#+END_SRC

It is important to be careful when using the =coq_model= annotation.
More precisely, the fact that =t= is a =list= in the “Coq universe”
shall not be used while the implementation phase, only the
verification phase.

Finally, ~coqffi~ has got an experimental feature called
~transparent-types~ (enable by using the ~-ftransparent-types~
command-line argument). If the type definition is given in the module
interface, then ~coqffi~ tries to generates an equivalent definition
in Coq. For instance,

#+BEGIN_SRC ocaml
type 'a llist =
  | LCons of 'a * (unit -> 'a llist)
  | LNil
#+END_SRC

becomes

#+BEGIN_SRC coq
Inductive llist (a : Type) : Type :=
| LCons (x0 : a) (x1 : unit -> llist a) : llist a
| LNil : llist a.
#+END_SRC

Mutually recursive types are supported, so

#+BEGIN_SRC ocaml
type even = Zero | ESucc of odd
and odd = OSucc of even
#+END_SRC

becomes

#+BEGIN_SRC coq
Inductive odd : Type :=
| OSucc (x0 : even) : odd
with even : Type :=
| Zero : even
| ESucc (x0 : odd) : even.
#+END_SRC

The ~transparent-types~ feature is *experimental*, and is currently
limited to variant types. It notably does not support
records. Besides, it may generate incorrect Coq types, because it does
not check whether or not the
[[https://coq.inria.fr/refman/language/core/inductive.html#positivity-condition][positivity
condition]] is satisfied.

** Pure Functions

~coqffi~ assumes OCaml values are pure by default, and will generate
regular axiomatized Coq definitions for them. Similarly to type
entries, it is possible to provide a Coq model using the =coq_module=
annotation.

#+BEGIN_SRC ocaml
val unpack : string -> (char * string) option
#+END_SRC

becomes

#+BEGIN_SRC coq
Axiom unpack : string -> option (ascii * string).
#+END_SRC

Polymorphic functions are supported.

#+BEGIN_SRC ocaml
val map : ('a -> 'b) -> 'a list -> 'b list
#+END_SRC

becomes

#+BEGIN_SRC coq
Axiom map : forall (a : Type) (b : Type), (a -> b) -> list a -> list b.
#+END_SRC

** Impure Primitives

Finally, ~coqffi~ reserves a special treatment for OCaml value
explicitly marked as impure, using the =impure= annotation.  Impurity
is usually handled in pure programming languages by means of monads,
and ~coqffi~ is no exception to the rule.

Given the set of impure primitives declared in an interface module,
~coqffi~ will (1) generates a typeclass which gathers these
primitives, and (2) generates instances of this typeclass for
supported backends.

We illustrate the rest of this section with the following impure
primitives.

#+BEGIN_SRC ocaml
val echo : string -> unit [@@impure]
val scan : unit -> string [@@impure]
#+END_SRC

where =echo= allows writing something the standard output, and =scan=
to read the standard input.

Assuming the processed module interface is named ~console.mli~, the
following Coq typeclass is generated.

#+BEGIN_SRC coq
Class MonadConsole (m : Type -> Type) := { echo : string -> m unit
                                         ; scan : unit -> m string
                                         }.
#+END_SRC

Using this typeclass and with the additional support of an additional
=Monad= typeclass, we can specify impure computations which interacts
with the console. For instance, with the support of ~ExtLib~, one can
write.

#+BEGIN_SRC coq
Definition pipe `{Monad m, MonadConsole m} : m unit :=
  let* msg := scan () in
  echo msg.
#+END_SRC

There is no canonical way to model impurity in Coq, but over the years
several frameworks have been released to tackle this challenge.

~coqffi~ provides three features related to impure primitives.

*** ~simple-io~

When this feature is enabled, ~coqffi~ generates an instance of the
typeclass for the =IO= monad introduced in the ~coq-simple-io~ package

#+BEGIN_SRC coq
Axiom io_echo : string -> IO unit.
Axiom io_scan : unit -> IO string.

Instance IO_MonadConsole : MonadConsole IO := { echo := io_echo
                                              ; scan := io_scan
                                              }.
#+END_SRC

It is enabled by default, but can be disabled using the
~-fno-simple-io~ command-line argument.

*** ~interface~

When this feature is enabled, ~coqffi~ generates an inductive type
which describes the set of primitives available, to be used with
frameworks like [[https://github.com/ANSSI-FR/FreeSpec][FreeSpec]] or
[[https://github.com/DeepSpec/InteractionTrees][Interactions Trees]]

#+BEGIN_SRC coq
Inductive CONSOLE : Type -> Type :=
| Echo : string -> CONSOLE unit
| Scan : unit -> CONSOLE string.

Definition inj_echo `{Inject CONSOLE m} (x0 : string) : m unit :=
  inject (Echo x0).

Definition inj_scan `{Inject CONSOLE m} (x0 : unit) : m string :=
  inject (Scan x0).

Instance Inject_MonadConsole `{Inject CONSOLE m} : MonadConsole m :=
  { echo := inj_echo
  ; scan := inj_scan
  }.
#+END_SRC

Providing an instance of the form src_coq[:exports code]{forall i,
Inject i M} is enough for your monad =M= to be compatible with this
feature (see for instance
[[https://github.com/ANSSI-FR/FreeSpec/blob/master/theories/FFI/FFI.v][how
FreeSpec implements it]]).

*** ~freespec~

When this feature in enabled, ~coqffi~ generates a semantics for the
inductive type generated by the ~interface~ feature.

#+BEGIN_SRC coq
Axiom unsafe_echo : string -> unit.
Axiom unsafe_scan : uint -> string.

Definition console_unsafe_semantics : semantics CONSOLE :=
  bootstrap (fun a e =>
    local match e in CONSOLE a return a with
          | Echo x0 => unsafe_echo x0
          | Scan x0 => unsafe_scan x0
          end).
#+END_SRC

* Moving Forward

~coqffi~ comes with a comprehensive man page. In addition, the
interested reader can proceed to the next article of this series,
which explains how [[./CoqffiEcho.org][~coqffi~ can be used to easily
implement an echo server in Coq]].